Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shu-Ping Yang,^a* Li-Jun Han,^b Da-Qi Wang^c and Tie-Zhu Ding^d

^aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^bDepartment of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^dDepartment of Physics, Inner Mongolia University, Hohhot 010021, People's Republic of China

Correspondence e-mail: yangshuping@hhit.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å Disorder in main residue R factor = 0.053 wR factor = 0.159 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. organic papers

(*E,E*)-*N,N*′-Bis(3,4-methylenedioxybenzylidene)propane-1,2-diamine

In the title compound, $C_{19}H_{18}N_2O_4$, the methyl group is disordered. The molecule is centrosymmetric and has a *trans* configuration (*E*,*E*).

Received 21 November 2006 Accepted 11 December 2006

Comment

Schiff bases are important ligands in the development of Schiff base complexes, because they are potentially capable of forming stable complexes with metal ions (Johnson *et al.*, 1996; Alizadeh *et al.*, 1999). Also, some diamine Schiff bases have shown good anti-inflammatory and analgesic activities (Sondhi *et al.*, 2006). The crystal structures of some diamine Schiff bases have been reported (Xiao & Wang, 2006; Sun *et al.*, 2004). Here we report the crystal structure of a diamine Schiff base, N,N'-bis(3,4-methylenedioxybenzylidene)-propane-1,2-diamine, (I).

The molecule of (I) is centrosymmetric. As a result, the methyl group is disordered over two sites, C9 and C9A [symmetry code: (A) 1 - x, 1 - y, 1 - z], each with 0.5 site occupancy (Fig. 1). The molecule has a *trans* configuration (*E*,*E*), and the geometric parameters are normal.

There are no significant intermolecular interactions in the crystal structure.

Experimental

A mixture containing propane-1,2-diamine (1.48 g, 20 mmol) and 3,4methylenedioxybenzaldehyde (1.50 g, 10 mmol) was refluxed for about 2 h in ethanol (30 ml); the mixture was then cooled and the product was filtered off, washed with methanol and dried. Yellow crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from ethanol (m.p. 401–402 K).

```
Crystal data

C_{19}H_{18}N_2O_4

M_r = 338.35

Monoclinic, P2_1/c

a = 14.325 (3) Å

b = 5.058 (2) Å

c = 12.250 (2) Å

\beta = 105.968 (2)°

V = 853.3 (4) Å<sup>3</sup>
```

Z = 2 D_x = 1.317 Mg m⁻³ Mo K α radiation μ = 0.09 mm⁻¹ T = 298 (2) K Block, yellow 0.56 × 0.50 × 0.41 mm

© 2007 International Union of Crystallography All rights reserved Data collection

Siemens SMART 1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.950, T_{\max} = 0.963$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.159$ S = 1.021490 reflections 118 parameters H-atom parameters constrained 4114 measured reflections 1490 independent reflections 1011 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0871P)^2 \\ &+ 0.186P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\rm min} &= -0.29 \text{ e } \text{\AA}^{-3} \end{split}$$

All H atoms were positioned geometrically and refined as riding on their parent atoms, with C–H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms, and C–H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other H atoms.

Disorder in the methyl group was identified from a difference Fourier map. The site occupancies were fixed at 0.5 due to the centrosymmetry of the molecule. The disordered C atoms were refined anisotropically with no constraints or restraints.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Figure 1

The molecular structure of compound (I), showing the atom-labelling scheme and disordered methyl groups (C10, C10A). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x + 1, -y + 2, -z + 1].

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

References

- Alizadeh, N., Ershad, S., Naeimi, H., Sharghi, H. & Shamsipur, M. (1999). Pol. J. Chem. 73, 915–926.
- Johnson, C. P., Atwood, J. L., Steed, J. W., Bauer, C. B. & Rogers, R. D. (1996). *Inorg. Chem.* 35, 2602–2610.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.
- Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). *Acta Cryst.* E60, 01707–01708. Xiao, L.-J. & Wang, D.-Q. (2006). *Acta Cryst.* E62, 0724–0725.